INFLUENCE OF CROP ROTATIONS ON SOIL DENSITY

  • S. A. Zamyatin, PhD in Agricultural Sciences Mari Agricultural Research Institute – Mari Agricultural Research Institute – Branch of Federal Agricuctural Research Center of the North-East named N. V. Rudnitsky
  • A. K. Svechnikov, PhD in Agricultural Sciences Mari Agricultural Research Institute – Mari Agricultural Research Institute – Branch of Federal Agricuctural Research Center of the North-East named N. V. Rudnitsky

Abstract

The survey objective is to study and evaluate soil density as one of its most important agrophysical properties. А two-factor experiment was conducted with two establishment of trial in 1996-2021 yrs.: factor A – crop rotations (one grain-grass and three fruit-changing), factor B – the level of mineral fertilizers. For the first time in the Mari El Republic, it was studied and found that the soil bulk density under perennial legumes in a layer of 0-20 cm was 1.34-1.28 g/cm3, under winter crops 1.29-1.28 g/cm3, spring crops 1.26-1.24 g/cm3, potatoes 1.15-1.12 g/cm3. Soil density decreased by the end of the growing season. Long-term fertilizations promotes the root development and leads to soil decompaction. The lowest average density per rotation was under the crops of the second crop rotation, where manure was used for potatoes. It was 1.24-1.23 g/cm3 at the beginning of the growing season. Potato cultivation increased soil density by 0.01 g/cm3 without organic fertilizations in crop rotations I and III. Perennial grasses without growing potatoes further increased the soil density at the vegetation beginning to 1.27-1.26 g/cm3. This trend persisted under crop rotations by the middle of the growing season. The difference between the soil density of grain-grass and fruit-changing crop rotations was 0.03-0.04 g/cm3 by the vegetation end.

References

1. Balabanov S.S. i dr. Biologizaciya zemledeliya i plotnost' pochvy v zernoparopropashnom sevooborote // Vestnik Kurskoj GSKHA. 2013. № 1. S. 68–70.
2. Belenkov A.I., Piskunova A.S. Urozhajnost' polevyh kul'tur i plodorodie dernovo-podzolistoj pochvy v zavisimosti ot obrabotki v opyte CTZ // Agroekologicheskie problemy pochvovedeniya i zemledeliya. Kursk: FGBNU «Kurskij FANC», 2019. S. 48–52.
3. Blagopoluchnaya O.A., Devterova N.I. Netradicionnye energosberegayushchie sposoby obrabotki pochv tyazhelogo mekhanicheskogo sostava v zvene sevooborota // Novye tekhnologii. 2020. № 1. S. 124–131. DOI: 10.24411/2072-0920-2020-10113.
4. Bogomolova Yu.A., Sakov A.P., Ivenin A.V. Vliyanie obrabotki pochvy i udobrenij na izmeneniya ee agrofizicheskih svojstv i urozhajnost' soi v zvene zernovogo sevooborota // Agrarnaya nauka Evro-Severo-Vostoka. 2018. T. 64. № 3. S. 62–69. DOI: 10.30766/2072-9081.2018.64.3.62-69.
5. Vadyunina A.F., Korchagina Z.A. Metody issledovaniya fizicheskih svojstv pochv. 3-e izd., pererab. i dop. M.: Agropromizdat, 1986. 415 s.
6. Gangur V.V. Vliyanie sel'skohozyajstvennyh kul'tur, ih sootnosheniya v raznorotacionnyh sevooborotah levoberezhnoj lesostepi Ukrainy na plotnost' pochvy i urozhajnost' // Vestnik Prikaspiya. 2018. № 1 (20). S. 36–43.
7. Dospekhov B.A. Metodika polevogo opyta. 5-e izd., dop. i pererab. M.: Agropromizdat, 1985. 351 s.
8. Zinchenko S.I. Izmenenie plotnosti slozheniya v agroekosistemah seroj lesnoj pochvy // Vladimirskij zemledelec. 2020. № 4 (94). S. 4–7. DOI: 10.24411/2225-2584-2020-10137.
9. Kalinin O.S., Kravchenko R.V. Vliyanie sistem osnovnoj obrabotki pochvy i predshestvennikov na plotnost' pochvy v posevah saharnoj svekly // Politematicheskij setevoj elektronnyj nauchnyj zhurnal Kubanskogo GAU. 2021. № 173. S. 61–75. DOI: 10.21515/1990-4665-173-006.
10. Kozlova L.M., Noskova E.N., Popov F.A. Ocenka razvitiya boleznej zernovyh kul'tur pri resursosberegayushchih sistemah obrabotki pochvy i primenenii biopreparatov v adaptivno-landshaftnom zemledelii // Agrarnaya nauka Evro-Severo-Vostoka. 2020. T. 21. № 6. P. 721–732. DOI: 10.30766/2072-9081.2020.21.6.721-732.
11. Konishchev A.A., Garifullin I.I., Konishcheva E.N. O metodike ispol'zovaniya harakteristiki «Optimal'naya plotnost'» v issledovaniyah po obrabotke pochvy // Vladimirskij zemledelec. 2019. № 1 (87). S. 16–20. DOI: 10.24411/2225-2584-2019-10047.
12. Kuzychenko Yu.A., Kobozev A.K. Fizicheskoe sostoyanie pahotnogo sloya pochvy pri razlichnyh sposobah osnovnoj obrabotki v zvene sevooborota // Sel'skohozyajstvennyj zhurnal. 2018. T. 1. № 11. S. 27–31.
13. Novoselov S.I., Kuz'minyh A.N., Eremeev R.V. Plodorodie pochvy i produktivnost' sel'skohozyajstvennyh kul'tur v zavisimosti ot osnovnoj obrabotki i sevooborota // Plodorodie. 2019. № 6 (111). S. 22–25. DOI: 10.25680/S19948603.2019.111.06.
14. Sabitov M.M. Sevooborot – osnova stabilizacii plodorodiya pochv i produktivnosti kul'tur // Izvestiya Samarskogo nauchnogo centra RAN. 2019. T. 21. № 6 (92). S. 89–94. DOI: 10.32786/2071-9485-2019-04-12.
15. Samarkin A.A. i dr. Plotnost' slozheniya pahotnogo sloya pochvy v zavisimosti ot priemov obrabotki pochvy, skhemy i sposobov posadki kartofelya // Vestnik Kazanskogo GAU. 2017. T. 12. № 1 (43). S. 36–39. DOI: 10.12737/article_59368709c7e266.13191535.
16. Cheverdin Yu.I. Vzaimosvyaz' plotnosti slozheniya s effektivnym plodorodiem pochv // Itogi i perspektivy razvitiya agropromyshlennogo kom- pleksa. Prikaspijskij NII aridnogo zemledeliya, 2018. S. 185–186.
17. Cherkasov G.N., Akimenko A.S. Sovershenstvovanie sevooborotov i struktury posevnyh ploshchadej dlya hozyajstv razlichnoj specializacii Central'nogo Chernozem'ya // Zemledelie. 2016. № 5. S. 8–11.
18. Shchigrova L.I., Nikolaev V.A. Ocenka strukturnogo sostoyaniya dernovo-podzolistoj pochvy po ee plotnosti // Doklady TSKHA. M.: Rossijskij GAU – MSKHA im. K.A. Timiryazeva, 2021. S. 187–190.
19. Esedullaev S.T., Mel'caev I.G. Biologizirovannye sevooboroty - osnovnoj faktor povysheniya plodorodiya dernovo-podzolistyh pochv i produktivnosti pashni v Verhnevolzh'e // Agrarnyj vestnik Urala. 2019. № 11 (190). S. 18–26. DOI: 10.32417/article_5dcd861e3d2300.42959538.
20. Abu-Hamdeh N.H. Compaction and subsoiling effects on corn growth and soil bulk density // Soil & Water Management & Conservation. 2003. Vol. 67. № 4. P. 1213–1219. DOI: 10.2136/sssaj2003.1213.
21. Atkinson B.S., Sparkes D.L., Mooney S.J. Effect of seedbed cultivation and soil macrostructure on the establishment of winter wheat (Triticum aestivum) // Soil and tillage research. 2009. Vol. 103. № 2. P. 291–301. DOI: 10.1016/j.still.2008.10.027.
22. Bian D. et al. Effects of tillage practices on root characteristics and root lodging resistance of maize // Field Crops Research. 2016. Vol. 185. P. 89–96. DOI: 10.1016/j.fcr.2015.10.008.
23. Busari M.A. et al. Conservation tillage impacts on soil, crop and the environment // International soil and water conservation research. 2015. Vol. 3. № 2. S. 119–129. DOI: 10.1016/j.iswcr.2015.05.002.
24. Ishaq M. et al. Subsoil compaction effects on crops in Punjab, Pakistan: II. Root growth and nutrient uptake of wheat and sorghum // Soil and tillage research. 2001. Vol. 60. № 3. P. 153–161. DOI: 10.1016/S0167-1987(01)00177-5.
25. Raghavan G.S.V. et al. Vehicular traffic effects on development and yield of corn (maize) // Journal of Terramechanics. 1979. Vol. 16. № 2. P. 69–76. DOI: 10.1016/0022-4898(79)90002-8.
26. Scott D.I. et al. The effects of wheel-induced soil compaction on anchorage strength and resistance to root lodging of winter barley (Hordeum vulgare L.) // Soil and Tillage Research. 2005. Vol. 82. № 2. P. 147–160. DOI: 10.1016/j.still.2004.06.008.
27. Shaheb M.R., Venkatesh R., Shearer S.A. A review on the effect of soil compaction and its management for sustainable crop production // J. Biosyst. Eng. 2021. Vol. 46. № 4. P. 417–439. DOI: 10.1007/s42853-021-00117-7.
28. Thomas G.W., Haszler G.R., Blevins R.L. The effects of organic matter and tillage on maximum compactability of soils using the proctor test // Soil Science. 1996. Vol. 161. № 8. S. 502–508.
29. Tracy S.R. et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography // Annals of Botany. 2012. Vol. 110. № 2. P. 511–519. DOI: 10.1093/aob/mcs031.
30. Voorhees W.B. Long-term effect of subsoil compaction on yield of maize // Advances in Geoecology. 2000. № 32. P. 331–338.
31. Wu X. et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China // Field Crops Research. 2018. Vol. 215. P. 163–172. DOI: 10.1016/j.fcr.2017.10.016.
Published
19-05-2024
How to Cite
ZAMYATIN, S. A.; SVECHNIKOV, A. K.. INFLUENCE OF CROP ROTATIONS ON SOIL DENSITY. Vestnik of the Russian agricultural science, [S.l.], n. 3, p. 70-75, jan. 1970. ISSN 2500-2082. Available at: <http://www.vestnik-rsn.ru/vrsn/article/view/1129>. Date accessed: 19 may 2024. doi: https://doi.org/10.31857/2500-2082/2023/3/70-75.
Section
AGRICULTURE