Monitoring system of the agrophysical soil constitution in the North-West region of Russia

Authors

  • Е. В. Балашов, Array Agrophysical Research Institute
  • Н. П. Бучкина, Array Agrophysical Research Institute
  • Е. Я. Рижия, Array Agrophysical Research Institute
  • Л. В. Бойцова, Array Agrophysical Research Institute
  • С. В. Павлик, Array Agrophysical Research Institute
  • К. Г. Моисеев, Array Agrophysical Research Institute
  • А. В. Бурова, Array Agrophysical Research Institute
  • Е. Г. Зинчук, Array Agrophysical Research Institute
  • И. М. Мухина, Array Agrophysical Research Institute

Keywords:

monitoring, , theory of similarity, agrophysical soil state, , soil quality indicators, organic matter, greenhouse gas emissions, databases, models

Abstract

A proposed system of monitoring of agrophysical soil state includes conjugate interdisciplinary studies within three stages: morphogenetic soil mapping and monitoring of soil quality indicators in genetic soil horizons; development of databases; application of mathematical models. The use of the system of monitoring of agrophysical soil state has enabled to assess the effects of anthropogenic and natural impacts on soil quality with a higher significance. The analysis of assessment of changes in the agrophysical soil state was based on results of long-term instrumental studies on: genetic and agrophysical properties in soil profiles; profile distribution of clay-associated soil organic matter; direct emissions and subsoil concentrations of greenhouse gases. Soil maps and databases were developed and used in two mathematical models. Theory of similarity was used for formalization of quantitative criterions and classes of similar physical events and processes to evaluate the soil sustainability to impacts of anthropogenic factors.

References

1. Балашов, Е.В. Современный научно-методологический подход к проведению мониторинга качества и устойчивости сельскохозяйственных почв//Агрофизика. - 2012. - № 3. - C. 10-20//Balashov, E.V. Sovremennyi nauczno-metodologiczeskii podchod k provedeniyu monitoringa kaczestva i ustoiczivosti selskochozyaistvennych poczv[Modern methodological approach to moni-toring of quality and sustainability of agricultural soils]/Agrofizika. – 2012. – № 3. – S. 10-20.
2. Моисеев, К.Г. Крупномасштабная почвенная карта Меньковского филиала Агрофизического института Россельхозакадемии/К.Г. Моисеев, Е.Г. Зинчук//Агрофизика. - 2014. - № 3. - C. 8-17//Moiseev, K.G. Krupnomasshtabnaya poczvennaya karta Menkovskogo filiala Agrofiziczeskogo instituta Rosselchozakademii[Large-scale soil map of Menkovo branch of the Agrophysical Re-search Institute of the Russian Academy of Agricultural Sciences]/K.G.Moissev, E.G.Zinczuk. - Agrofizika. – 2014. - № 3. – S. 8-17.
3. Моисеев, К.Г. Анализ динамики гумусного состояния почв фрактальными методами/К.Г. Мои-сеев, Л.В.Бойцова, В.Д.Гончаров//Агрофизика. – 2014. - № 1. - C. 1-8//Moiseev, K.G. Analiz dinamiki gumusnogo sostoyaniya poczv fraktalnymi metodami[Analysis of dynamics of soil humus state by fractal methods]/K.G.Moiseev, L.V.Boitsova, V.D.Gonczarov. – Agrofizika. – 2014. – № 1. – S. 1-8.
4. Рижия, Е.Я. Потенциальная нитрификационная и денитрификационная способность автоморфных и полугидроморфных дерново-подзолистых почв/Е.Я.Рижия, И.М.Мухина, М.А.Москвин и др.//Агрофизика. – 2014. - № 2. - С. 1-7//Rizhiya, E.Y. Potenczialnaya nitrifikaczionnaya I denitrifi-caczionnaya sposobnost avtomorfnych I polugidromorfnych dernovo-podzolistych poczv[Potential nitrification and denitrification capacity of automorphic and semihydromorphic Spo-dosols]/E.Ya.Rishiya, I.M.Mukhina, M.A.Moskvin i dr. – Agrofizika. – 2014. – № 2. – S. 1-7.
5. Balashov, E. N2O fluxes from agricultural soils in Slovakia and Russia - direct measurements and pre-diction using the DNDC model/E.Balashov, J.Hor?k, B.?i?ka at all//Folia Oecologica. – 2010. – 37. – S. 8-15.
6. Balashov, E. Field validation of DNDC and SWAP models for temperature and moisture content of loamy sand and sandy loam Spodosols/E.Balashov, N.Buchkina, E.Rizhiya, C.Farkas//International Ag-rophysics. – 2014. – 28. – P. 133-142.
7. Boitsova, L. Distribution of total and clay-associated organic matter in profiles of arable loamy sand Spodosol/L.Boitsova, E.Zinczuk, S.Neprimerova, E.Balashov//Folia Oecologica. – 2015.- 42(1). – S. 1-9.
8. Buchkina, N.P. Soil physical properties and nitrous oxide emissions from agricultural soils/N.P.Buchkina, E.Y.Rizhiya, S.V.Pavlik, E.V.Balashov//Advances in Agrophysical Research (S. Grundas and A. Stepniewski, Eds.). – InTech. - 2013. – P. 193-220.
9. Karlen, D.L. Soil quality: a concept, definition, and framework for evaluation/D.L.Karlen, M.J. Maus-bach, J.W.Doran at all//Soil Sci. Soc. Am. J. – 1997. – 51. - P. 4-10.
10. Li, C. Modelling trace gas emissions from agricultural ecosystems/C. Li//Nutrient Cycling in Agroecosystems. – 2000. – 58. - P. 259-276.
11. Van Dam, J.C. Theory of SWAP version 2.0/J.C. Van Dam, J.Huygen, J.G.Wesseling at all//DLO Winand Staring Centre. – 1997. - The Netherlands.

Additional Files

Published

2017-12-14

Issue

Section

TO THE 85TH ANNIVERSARY OF THE AGROPHYSICAL RESEARCH AND DEVELOPMENT INSTITUTE

How to Cite

Balashov, E. V., Buchkina, N. P., Rizhiya, E. Y., Boitsova, L. V., Pavlik, S. V., Moiseev, K. G., Burova, A. V., Zinczuk, E. G., & Mikhina, I. M. (2017). Monitoring system of the agrophysical soil constitution in the North-West region of Russia. Vestnik of the Russian Agricultural Science, 4, 6-8. http://www.vestnik-rsn.ru/index.php/vrsn/article/view/28